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Abstract. A neural network model composed of two-state (1 and −1) and three-state (1, 0 and −1) neurons
is proposed. The two-state neurons are connected with the three-state ones only and vice versa. We derive
dynamic equations for the model under the assumption of non-symmetrical dilution of connections. A
zero-noise phase diagram is obtained and a region in which two fixed point solutions can coexist is found.
Basins of attraction for the solutions are also investigated.
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1 Introduction

In recent years, there has been a great deal of research
on neural networks and many kinds of models have been
proposed. Originally, behaviors of neurons were mostly de-
scribed by either binary or continuous variables [1,2]. Re-
cently, however, neural networks composed of other types
of neurons are attracting interest from the point of view
of biology and applications. For example, oscillator neu-
ral networks are inspired by some experimental results [3].
Theoretical investigations of this kind of models have been
performed by several authors [4–7]. Neural networks with
multistate neurons such as Potts type neurons [8–10] or
multiple-level Ising (Q-Ising) type ones [11–14] are also
proposed. The merit of the latter type of models is that
one neuron can be correlated with a complex state such as
a color or a grey tone of each pixel in an image. Moreover, a
neural network model composed of multidimensional spin
neurons was proposed [15] as a general extension of the
Hopfield model of theoretical interest.

Most of the networks proposed so far, though, were
assumed to be homogeneous, which means that networks
consisted of only one kind of elements. To our knowledge,
only a few models composed of two kinds of elements or
more have been discussed; a network consisting of neu-
rons with a sigmoidal or a piecewise linear input-output
relation [16], a network of oscillators with scattered natu-
ral frequencies [17], and an Ashkin-Teller neural network
with two types of interacting neurons at each site hav-
ing different functions [18]. In this paper, we consider yet
another network composed of two kinds of neuron-like el-
ements, which are two-state or three-state ones. One of
the questions we want to answer is whether or not the
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network shows new interesting properties. Therefore we
investigate static and dynamic properties of this model
stressing the pure physics rather than any possible biolog-
ical background.

The rest of this paper is organized as follows: in
Section 2, we introduce our model composed of two kinds
of neurons. We derive equations which govern the dynam-
ics of the system in Section 3. On the basis of the results of
Section 3, we calculate the phase diagram and discuss the
static properties in Section 4. In Section 5, we solve nu-
merically equations derived in Section 3 and investigate
the dynamic properties of the present system. Basins of
attraction are also discussed. In the last section (Sect. 6),
we summarize our results.

2 Model

Although in this paper we concentrate upon a network
composed of two-state (S = 1

2 ) and three-state (S = 1)
neurons, let us first define a more general model composed
of two kinds of neurons both of which in general take three
states (+1, 0,−1), however, with different thresholds. Note
that if the threshold is equal to zero, neurons take only two
states (+1,−1). Two types of neurons, say, type-A neu-
rons and type-B neurons, are distributed in the nodes of
a bipartite lattice in such a way that each type-A neuron
contacts only with type-B neurons via synaptic connec-
tions Jij and vice versa. If they were nearest neighbors,
the network could look like that in Figure 1 in the paper by
Kaneyoshi [19], but they are not. The connections are es-
sentially global, but with a bipartite connectivity like that
in the paper by De Wilde [20]. Non-symmetrical dilution of
the connections is assumed [21], which leads ultimately to
closed dynamic equations. Let us define Sfi (f = A or B)
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as a state of i-th neuron belonging to a subnetwork f ,
where the subnetwork f consists of N/2 type-f neurons.
The interactions (connections) Jij between pairs of neu-
rons i and j are expressed in terms of the p embedded
patterns ξµi (µ = 1, . . . , p; i = 1, . . . , N) as

Jij =
Cij
C

p∑
µ=1

ξµi ξ
µ
j , (1)

where the random parameters Cij (independent of Cji)
take the value 1 with probability 2C

N and 0 with proba-
bility 1− 2C

N . The network will be treated in the extreme
dilution limit [21] (lnN) / (lnC) → ∞ for N → ∞. Jij
are assumed to be non-zero only between pairs of neu-
rons belonging to different subnetworks. Half of neurons
of the pattern ξµi (i = 1, . . . , N) are of type-A and the
other half of type-B. Without loss of generality, we apply
the notation admitting that the variables Sfi and ξµi with
1 ≤ i ≤ N/2 belong to the type-A and Sfi and ξµi with
N/2 + 1 ≤ i ≤ N belong to the type-B. Each pattern has
an activity aAµ on the A-subnetwork defined by

aAµ =
2
N

N/2∑
i=1

|ξµi | (2)

and, on the B-subnetwork,

aBµ =
2
N

N/2∑
i=1

|ξµN/2+i|. (3)

For active neurons in a pattern, we assume that ξµi =
1 or − 1 with equal probability.

The model proposed here is a generalization of that
proposed by Yedidia [11] applying identical Q-Ising spin
variables with Q = 3 on the whole network. We adopt
discrete time parallel dynamics and as an updating rule,
the state of the i-th neuron belonging to the subnetwork
f at the next time step is defined as

Sfi (t+ 1)

=

 1 with probability exp[(hfi (t)− θf )/T ]/Zf
0 with probability 1/Zf
−1 with probability exp[(−hfi (t)− θf )/T ]/Zf

(4)

with Zf ≡ exp[(hfi (t)− θf )/T ] + 1 + exp[(−hfi (t)− θf )/T ]
for θf 6= 0 and

Sfi (t+ 1) =
{

1 with probability exp[hfi (t)/T ]/Zf
−1 with probability exp[−hfi (t)/T ]/Zf

(5)

with Zf ≡ exp[hfi (t)/T ]+exp[−hfi (t)/T ] for θf = 0, where
hfi (t) is the local field at time t defined as

hfi (t) =
∑
j

JijS
f ′

j (t) , (6)

θf is a threshold for type-f neurons and T is the temper-
ature. Note that f ′ = A if f = B and vice versa.

In our model we introduce an overlap for each subnet-
work as follows. mµ

f (f is A or B) denotes the overlap of
the subnetwork f with pattern µ at time t and is defined as

mµ
A(t) =

2
NaAµ

N/2∑
i=1

ξµi S
A
i (t) (7)

and

mµ
B(t) =

2
NaBµ

N/2∑
i=1

ξµN/2+iS
B
N/2+i(t). (8)

A dynamic activity afD(t) is defined for the subnetwork f
with θf 6= 0,

afD(t) =
2
N

∑
i

|Sfi (t)|. (9)

For θA = θB one recovers the original Yedidia model [11],
for θA = θB = 0 – one of the conventional models with
two-level neurons. In order to have a model leading to
closed formulas, our generalization of Yedidia’s [11] work
has been treated in the limit of non-symmetrical dilution
with the help of the random independent parameters Cij
by applying the methods introduced for two-state neu-
rons by Derrida et al. [21]. Since the latter paper is rather
concise, the calculations presented in the form given by
Kree and Zippelius [22] were followed closely. It has been
carefully checked that all mathematics is correct also in
the present mixed neurons case. In particular, our dy-
namic equations (see Eqs. (11-13) below) reduce in the
θA = θB = 0 limit (i.e., all neurons of two-level type)
to those given in the Appendix A, p. 209 in the latter
publication [22].

3 Equations

In this section, we present the dynamic equations of a
mixed system consisting of two types of neurons f (f =
A or B) with, in general, different thresholds θf . In the
special case of, say, θA = 0, the system is reduced to a
bipartite network with binary and three-level neurons. In
the following, we consider the case when the network has
some macroscopic overlap with one of the patterns (say,
pattern 1) and no macroscopic overlap with any other one:

m1
f = mf , m1

f ′ = mf ′ , mν
f = mν

f ′ = 0 (ν ≥ 2).
(10)

A calculation along the lines described in reference [22]
for parallel dynamics leads to the following dynamic
equations:

mf (t+ 1)

=

∞∫
−∞

dy√
2πLf ′ (t)

exp
(
− y2

2Lf ′ (t)

)
f− [mf ′ (t)− y; θf ]

(11)
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and

afD (t+ 1)

= a1

∞∫
−∞

dy√
2πLf ′ (t)

exp
(
− y2

2Lf ′ (t)

)
f+ [mf ′ (t)− y; θf ]

+ (1− a1)

∞∫
−∞

dy√
2πLf ′ (t)

exp
(
− y2

2Lf ′ (t)

)
f+ [−y; θf ] ,

(12)

where

f± [X ; θ] =
exp[(X − θ) /T ]± exp[(−X − θ) /T ]

exp[(X − θ) /T ] + 1 + exp[(−X − θ) /T ]
,

(13)

Lf (t) = αa2
pa
f
D (t) with the storage ratio α = p

C and
a2
p = 1

p−1

∑
µ≥2 a

2
µ and f = A if f ′ = B and vice versa.

We will be particularly interested in the case when
one of the parameters, say, θA = 0, thus defining a system
composed of a mixture of two-level and three-level for-
mal neurons. Therefore, in the following, we rename the
variables. Namely, we replace the labels A and B with 1

2

and 1, respectively. The label 1
2 comes from spin- 1

2 (two-
state) neurons and the label 1 from spin-1 (three-state)

neurons. For example, S
1
2
i represent two-state neurons and

S1
i three-state neurons. mµ

1
2

is the overlap with the pattern
µ for the subnetwork composed of two-state neurons and
mµ

1 is the one for the subnetwork composed of three-state
neurons. Of course, the activities and dynamic activities
of the subnetwork of two-state neurons are equal to unity.
Thus we consider activities and dynamic activities only
for the subnetwork of three-state neurons and we omit la-
bels 1 for those variables. Specifically, we define activities
of the part of three-state neurons of pattern µ as

aµ =
2
N

∑
i

|ξµi | (14)

and dynamic activities as

aD(t) =
2
N

∑
i

|S1
i (t)|. (15)

Note that a similar kind of two-component model could
be formulated with the use of general Q-level variables
[23,24] with Q > 3. Now, if we set the threshold values
θA = 0 and θB = θ, the dynamic equations (11-12) take
the following simplified form:

m 1
2

(t+ 1)

=

∞∫
−∞

dy√
2πL1 (t)

exp
(
− y2

2L1 (t)

)
tanh

[
m1 (t)− y

T

]
,

(16)

m1 (t+ 1) =

∞∫
−∞

dy√
2πL 1

2

exp

(
− y2

2L 1
2

)
f−
[
m 1

2
(t)− y; θ

]
(17)

and

aD (t+ 1)

= a1

∞∫
−∞

dy√
2πL 1

2

exp

(
− y2

2L 1
2

)
f+

[
m 1

2
(t)− y; θ

]

+ (1− a1)

∞∫
−∞

dy√
2πL 1

2

exp

(
− y2

2L 1
2

)
f+ [−y; θ] , (18)

where f± [X ; θ] is given by equation (13), L 1
2

= αa2
p and

L1 (t) = αa2
paD (t) with the storage ratio α = p/C and

a2
p = 1

p−1

∑
µ≥2 a

2
µ. Let us recall that our model dif-

fers from that presented in reference [16] in several as-
pects. First, it represents a mixture of two sorts of time-
dependent variables (formal neurons): binary (two-level)
and three-level ones. Second, from the two possible ex-
tremes of a random mixture, like in reference [16], and
a completely ordered mixture, we choose the latter. Fi-
nally, as contrasted to the fully connected network of
reference [16], we have the asymmetrically diluted model,
for which one can derive closed evolution equations. The
magnetic analogue of our system (except for dilution and
range of connections) is a ferrimagnet [19] with two inter-
penetrating lattices of S = 1

2 and S = 1 spins.

4 Static properties

Let us consider static properties of the system in the case
of T = 0. From the dynamic equations (16-18), fixed point
equations at zero noise have been derived to be

m 1
2

= erf
(

m1

a
√

2αaD

)
, (19)

m1 =
1
2

[
erf
(
m 1

2
− θ

a
√

2α

)
+ erf

(
m 1

2
+ θ

a
√

2α

)]
(20)

and

aD =
a

2

[
2 + erf

(
m 1

2
− θ

a
√

2α

)
− erf

(
m 1

2
+ θ

a
√

2α

)]
+ (1− a)

[
1− erf

(
θ

a
√

2α

)]
, (21)

where

erf
(
x√
2

)
≡
√

2
π

x∫
0

exp
(
−z

2

2

)
dz. (22)
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Fig. 1. The phase diagram in the parameters plane α vs. θ. The
global storage ratio M > 0 in the regions A, B, and C; M = 0
in the region D. Solid line represents continuous (second order)
transition, and dotted and dashed lines – the discontinuous
(first order) transition.

For simplicity sake we assume that aµ = a for all µ. Note
that due to the bipartite character of the network the
variables m 1

2
and m1 are explicit functions of each other.

As for static properties, we are interested in plot-
ting the phase diagram of variables M = 1

2

(
m 1

2
+m1

)
and aD, where M is the global overlap with the network
consisting of both subnetworks. There are three possible
phases: a “retrieval” phase where M > 0, aD > 0, a
“chaotic” (or spin glass) phase where M = 0, aD > 0 and
a “zero” (or “paramagnetic”) phase whereM = 0, aD = 0.
Note that the case of M = 0, aD = 0, with aD defined
above as the activity of the S = 1 subnetwork, should not
be confused with the “zero” (or “paramagnetic”) phase
presented in the Yedidia’s analysis [11] where aD was de-
fined as a global variable, since a part of our system is
composed of S = 1

2 neurons whose activities are always
positive.

We will limit our analysis to the case a = 1. Let us con-
sider the case of m 1

2
≥ 0 and m1 ≥ 0. From equation (20)

it follows that for m 1
2
> 0 the variable m1 takes positive

values and that m1 = 0 if m 1
2

= 0. Thus, the search for
the boundary between the regions with M > 0 and M = 0
is equivalent to that for the boundary between the regions
with m 1

2
> 0 and m 1

2
= 0. The boundary between aD = 0

and aD > 0 is given by the condition that

erf
(
m 1

2
+ θ

√
2α

)
− erf

(
m 1

2
− θ

√
2α

)
= 2 (23)

should be satisfied for aD = 0. Equation (23) holds only
if the values of θ attain infinity or are larger than m 1

2

with α = 0. This means that, in contrast to the Yedidia’s
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(a) α = 0.5
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Fig. 2. M , m 1
2

, m1 and aD as a function of θ for cuts across

the phase diagram at the storage ratio values (a) α = 0.5 and
(b) α = 0.1. Solid, dashed, dotted and dashed-and-dotted lines
represent M , m 1

2
, m1 and aD, respectively. The plot of aD is

indistinguishable from m1 in Figure 2b, hence the dotted curve
representing the latter is not visible.

model [11], there is no effective “zero” phase (“paramag-
netic”) region in the phase diagram.

The phase diagram of M (α, θ) or, equivalently, that
of m 1

2
(α, θ), is given in Figure 1. In regions A and C,

there is only one solution with nonzero M . In the region
B, two solutions with nonzero M can coexist and which
one is actually selected depends on the initial conditions.
The region D corresponds to the “chaotic” phase; there is
no overlap, but the final activity of the S = 1 subsystem
remains finite. The solid line represents a second-order
phase transition. The dashed and dotted lines represent
the first-order phase transitions. In the case of θ = 0,
our model is equivalent to a network composed of two-
state neurons. Indeed, the nonzero value of α at θ = 0 is
nearly equal to 2/π, which is consistent with the result by
Yedidia [11] at θ = 0 and that by Derrida et al. [21].

To understand the phase diagram better, let us analyze
its cuts at some values of α and θ. Figures 2a and 2b show
the θ dependence of M , m 1

2
, m1 and aD for α = 0.5 and

α = 0.1, respectively. It can be found in Figure 2a that
M attains its maximum value at θ ' 0.2 and vanishes
at θ ' 1.2 in a continuous way characteristic of a second
order phase transition. Figure 2b shows that there are
two possible nonzero M solutions in the vicinity of θ =
1.0. The solution with larger M decreases monotonically
with the increase of θ and vanishes at θ ' 1.1 in a way
characteristic of a first order phase transition. Note that
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Fig. 3. M , m 1
2
, m1 and aD as a function of storage ratio α for

cuts across the phase diagram at (a) θ = 0.8, (b) θ = 1.0, (c)
θ = 1.13 and (d) θ = 1.2. Solid, dashed, dotted and dashed-
and-dotted lines represent M , m 1

2
, m1 and aD, respectively.

Note that for small α the dynamic activity aD does not differ
from m1 in the scale of the figure.

the values of m1 and aD are so close that one can not
distinguish them in the scale of Figure 2b.

In the phase diagram seen in Figure 1 two solutions
can be found, e.g., for θ = 0.8 and θ = 1.0. But the range
of α in which two solutions for M coexist is very narrow.
Therefore we concentrate on the analysis of the solutions

with larger M only. Figures 3a, 3b, 3c and 3d show the
overlaps M , m 1

2
, m1 and dynamic activity aD as a func-

tion of α for θ = 0.8, θ = 1.0, θ = 1.13 and θ = 1.2,
respectively. In the case of θ = 0.8 (Fig. 3a) and θ = 1.0
(Fig. 3b), we do not plot those solutions of m 1

2
and m1

with smaller values, although they can exist. In Figure 3a,
m 1

2
, m1 and M decrease monotonically with growing α;

m 1
2
, m1 and aD take the value 1.0 at α = 0. Also in Fig-

ure 3b, m 1
2
, m1 and M decrease monotonically with α.

At α = 0, however, aD is equal to 0.5, which means that
half of the S = 1 neurons are off and therefore the value
of m1 is 0.5. In the case of θ = 1.13, the overlap shows in-
teresting features (Fig. 3c). There are two separate ranges
of α in which nonzero solutions of overlap exist. In both
ranges, the plots of the overlap as a function of α are con-
vex curves. At θ = 1.2, there is only one region in which
nonzero solutions of the overlap exist (Fig. 3d). The maxi-
mum value of the overlap becomes small in that region. In
Figures 3a, 3b, 3c and 3d, the values of m1 and aD differ
but very slightly for small α, similarly as in Figure 2b.
Hence, a separate plot of aD is not visible in Figure 2b.

5 Dynamic properties

In the previous section, we found that two solutions with
nonzero M can coexist in the region B and which state
is reached by the network depends on the initial condi-
tions (m 1

2
(0),m1(0), aD(0)). In this section, we analyze

dynamics of the network and discuss the basin of attrac-
tion for such two states. In the noiseless case, dynamic
equations (16–18) are reduced to

m 1
2
(t+ 1) = erf

(
m1(t)√
2αaD(t)

)
, (24)

m1(t+ 1) =
1
2

[
erf

(
m 1

2
(t)− θ
√

2α

)
+ erf

(
m 1

2
(t) + θ
√

2α

)]
≡ f{m 1

2
(t)} (25)

and

aD(t+ 1)

=
1
2

[
2 + erf

(
m 1

2
(t)− θ
√

2α

)
− erf

(
m 1

2
(t) + θ
√

2α

)]
. (26)

Note that we set aµ = a for all µ for simplicity sake sim-
ilarly as in the previous section. From equations (24–26)
it follows that the dynamics of m 1

2
(t) obeys the equation

of the form

m 1
2
(t+ 2) = F{m 1

2
(t)}. (27)

With a set of parameters (θ, α) which belongs to the re-
gion B in the phase diagram (Fig. 1), the function F (x)
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Fig. 4. The shape of the function F (x), and the graphical
representation of the solutions x1, x2, x3 of x = F (x) (see text).

has a shape drawn schematically in Figure 4. Let the solu-
tions of x = F (x) be x = 0, x1, x2, x3(0 < x1 < x2 < x3).
According to the dynamic equation (27) and the Figure 4,
the system at an even time step is expected to show sev-
eral behaviors depending on the initial condition m 1

2
(0);

(i) if m 1
2
(0) > x2, then m 1

2
(0), m 1

2
(2), m 1

2
(4), . . . con-

verge to x3. (ii) if m 1
2
(0) = x2, then m 1

2
(0) = m 1

2
(2) =

m 1
2
(4) = . . . = x2. (iii) if 0 < m 1

2
(0) < x2, then m 1

2
(0),

m 1
2
(2), m 1

2
(4), . . . converge to x1. (iv) if m 1

2
(0) = 0, then

m 1
2
(0) = m 1

2
(2) = m 1

2
(4) = . . . = 0. On the other hand,

behaviors of the system at an odd time step depend on
m 1

2
(1), and m 1

2
(1) depends in turn on the initial condi-

tion (m1(0), aD(0)). For simplicity sake, from now on we
restrict the initial dynamic activity aD(0) to be equal to
unity. Now, let a solution of

xi = erf
[

x√
2α

]
, i = 1, 2, 3 (28)

be xi. We expect the following behaviors of the system
at an odd time step: (i) if m 1

2
(1) > x2 (which corre-

sponds to m1(0) > x2), then m 1
2
(1), m 1

2
(3), m 1

2
(5), . . .

converge to x3. (ii) if m1(0) = x2, then m 1
2
(1) = m 1

2
(3) =

m 1
2
(5) = . . . = x2. (iii) if 0 < m1(0) < x2, then m 1

2
(1),

m 1
2
(3), m 1

2
(5), . . . converge to x1. (iv) if m1(0) = 0, then

m 1
2
(1) = m 1

2
(3) = m 1

2
(5) = . . . = 0. Accordingly, if

m 1
2
(0) > x2 and m1(0) > x2, the system will converge

to a fixed point (x3, f(x3)), and if 0 < m 1
2
(0) < x2 and

0 < m1(0) < x2, the system will converge to another
fixed point (x1, f(x1)). Furthermore, if m 1

2
(0) > x2 and

0 < m1(0) < x2, or if 0 < m 1
2
(0) < x2 and m1(0) > x2,

the system will oscillate between two states, (x1, f(x3))
and (x3, f(x1)). The oscillatory behavior is well-known
when the dynamics is parallel in a fully connected net-
work [25].
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Fig. 5. The basins of attraction for the case (θ, α) = (1.0, 0.1)
and aD(0) = 1.0. The region F1 is the basin of attraction for
the fixed point FP1(0.968, 0.460) and the same holds for the
region F2 and the fixed point FP2(0.095, 0.002). The two re-
gions OS are basins of attraction for the oscillatory behavior
of the system. The system oscillates between two states rep-
resented by two triangles in the figure. Two open circles are
unstable fixed points.

The basins of attraction are shown in Figure 5 in the
case of (θ, α) = (1.0, 0.1) which belongs to the region B of
the phase diagram. (x2, x2) is found to be (0.371, 0.153)
in the present case. Two fixed points are found to be
(0.968, 0.460) and (0.095, 0.002); they are represented by
filled circles in Figure 5. The system is attracted either to
the fixed point (0.968, 0.460) or (0.095, 0.002), if it starts
from an initial state (m 1

2
(0),m1(0)) either in the region

F1 or in the region F2, respectively. On the other hand,
the system which starts from an initial state in the re-
gion OS oscillates between two states (0.968, 0.002) and
(0.095, 0.460), which are represented by filled triangles in
Figure 5. Two points: (0.371, 0.153) and (0, 0) are unstable
fixed points and they are drawn as open circles in Figure 5.

Solving the dynamic equations (24–26) numerically
confirms the above discussion. Examples of time evolu-
tions of the system in the case of (θ, α) = (1.0, 0.1) are
shown in Figure 6. As expected, when the system starts
from an initial state lying within the region F1 or F2,
it converges to fixed points FP1 or FP2, respectively
(Figs. 6a and 6b). It is interesting that the system reaches
the fixed points while oscillating. The system shows os-
cillatory behavior if it starts from an initial state lying
within the regionOS (Fig. 6c). Limit cycle attractors with
length 2 are well-known in the fully connected networks of
all neurons alike with little dynamics, but there the cycle
consists of two embedded patterns. This contrasts with
the situation encountered in our model where the cycle
consists of two possible solutions for a single embedded
pattern.
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Fig. 6. Dynamics of the system starting from three different
initial states (m 1

2
(0),m1(0)) = (a) (0.5, 0.4), (b) (0.1, 0.1), (c)

(0.5, 0.1). aD(0) is set equal to 0 in all cases. Time evolutions of
m 1

2
(t), m1(t) and aD(t) are represented by a solid line with cir-

cles, a solid line with squares and a dashed line with triangles,
respectively.

6 Summary

In this paper, we studied a neural network composed of
both two-state and three-state neurons. Under the asym-
metric dilution of synaptic connections and parallel dy-
namics, we have obtained, by standard methods, a set
of equations describing the dynamics of the system. The
equations had the form of recursion relations. A key point
of our analysis was to calculate two kinds of overlap; one
is the partial overlap of the subnetwork composed of two-
state neurons with a given pattern and the other is that
of the subnetwork composed of three-state neurons. The
dynamic activity of the S = 1 subnetwork was also calcu-
lated.

In order to discuss static properties, we obtained the
phase diagram, Figure 1, by solving dynamic equations at
zero temperature in the equilibrium state. It was found
that two kinds of fixed point solutions for overlap can co-
exist in a certain region, though the latter is rather narrow.
Furthermore, in a certain range of θ, there are two sepa-
rate ranges of α in which a nonzero overlap can exist (cf.
Fig. 3c). To our knowledge, such a phase diagram with
a gap between ranges of non-zero overlap has not been
reported for neural networks with only two-neuron con-
nections yet. On the other hand, this situation resembles
some results presented by Arenzon et al. [26]. However, it
should be remarked that the similarity mentioned above
could be observed despite the fact that we have applied a
different learning rule than that proposed in reference [26].

In order to consider dynamic properties of our system
we have solved our dynamic equations numerically. As a
result, we have found basins of attraction for two possi-
ble fixed points (Fig. 5). Also, the system is found to show
oscillatory behavior when starting from an initial state be-
longing to a certain region in the parameter space (Fig. 6).
In this case, the system oscillates between two possible so-
lutions of the overlap for a single embedded pattern. This
behavior contrasts with the oscillatory behavior observed
in the dynamics of fully connected networks with a par-
allel updating rule and all neurons alike, since the latter
type of oscillation consists of two embedded patterns.

The results presented here open some perspectives. For
the case of a fully connected network, as contrasted to
the asymmetrically diluted one discussed here, our model
might be analyzed by some other methods, for example
the replica theory [27] and the Self-Consistent Signal-to-
Noise Analysis [28]. Still other extension would be a sys-
tem havingQ-state neurons (Q > 3) in place of three-state
neurons applied in our present model. Within such an ex-
tended model, one could consider a system composed of
mixed binary and analogue (with a continuous gain func-
tion) neurons, the latter treated in the limit of infinite
Q. It would open a possibility of pattern recognitions for
black-white and grey-toned patterns, forming for example
the foreground and background, respectively.
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